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3 Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, CNRS-ULP,

23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2, France

(Dated: July 30, 2003)

The Loschmidt echo (LE) is a magnitude that measures the sensitivity of quantum dynamics to
perturbations in the Hamiltonian. For a certain regime of the parameters, the LE decays exponen-
tially with a rate given by the Lyapunov exponent of the underlying classically chaotic system. We
develop a semiclassical theory, supported by numerical results in a Lorentz gas model, which allows
us to establish and characterize the universality of this Lyapunov regime. In particular, the univer-
sality is evidenced by the semiclassical limit of the Fermi wavelength going to zero, the behavior for
times longer than Ehrenfest time, the insensitivity with respect to the form of the perturbation and
the behavior of individual (non-averaged) initial conditions. Finally, by elaborating a semiclassical
approximation to the Wigner function, we are able to distinguish between classical and quantum
origin for the different terms of the LE. This approach renders an understanding for the persistence
of the Lyapunov regime after the Ehrenfest time, as well as a reinterpretation of our results in terms
of the quantum–classical transition.

PACS numbers: PACS: 03.65.Sq; 05.45.+b; 05.45.Mt; 03.67.-a

I. INTRODUCTION

Controlling the phase in the evolution of a quantum system is a fundamental problem that is becoming increasingly
relevant in many areas of physics. In relatively simple systems, like a quantum dot in an Aharanov-Bohm ring1, the
phase can even be measured by transport experiments. The development of the quantum information field requires the
control of the phase of increasingly complex systems2. Such a control is hindered by interactions with the environment
in a way which is not completely understood at present.

Nuclear Magnetic Resonance provides a privileged framework to test our ideas on the evolution and degradation of
the quantum phase. The phenomenon of spin echo, through the reversal of the time evolution, allows to study how an
individual spin, in an ensemble, loses its phase memory3. The randomization of its phase appears as a consequence
of the interaction with other spins that act as an environment. Recently, it has become possible to test the phase
of the collective many-spin state through the experiments of Magic4 and Polarization5 echoes. In these cases a local
polarization “diffuses” away as consequence of the spin-spin interactions in the effective Hamiltonian H. The whole
many-body dynamics is then reversed by the sudden transformationH → −H . However, there is an increasing failure
to reach the initial polarization state which is a consequence of the fluctuations of the phase of the complex quantum
state6 and is a measure of the entropy growth7.

Surprisingly, the rate of loss of information of the phase appears as an intrinsic property of the system, being quite
insensitive to how small is the coupling to the external degrees of freedom or the precision of the reversal8. This may
be interpreted as analogous to the residual resistivity of impure metals. When the direct coupling to the thermal
bath is decreased by lowering the temperature, the resistivity becomes controlled by the reversible elastic scattering
with impurities9,10. The common feature of both intrinsic behaviors is the complexity of the dynamics that justifies
the stosszahlansatz or molecular chaos hypothesis.

However, such an hypothesis does not seem to be compatible with our basic knowledge of quantum dynamics.
Unlike classical mechanics, quantum dynamics exhibits a remarkable insensitivity to initial conditions11,12. That
is why the field known as quantum chaos deals mainly with the quantum stationary properties of systems whose
underlying classical dynamics is chaotic. Among these properties, the ones more frequently studied are the level
statistics13, wave function scarring14, and parametric correlations15. A notable exception among these studies was
that of Peres16, who realized that classically chaotic and integrable systems behave differently under imperfect time
reversal, for very short and long times. It is through the experimental findings above cited, that the study of time
evolution of classically chaotic systems has gained a privileged place in nowadays research.

A simplified version of the echoes experimentally studied is the so-called Loschmidt echo (LE)
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M(t) = |m(t)|2 =
∣∣∣〈ψ0| ei(H0+Σ)t/~ e−iH0t/~ |ψ0〉

∣∣∣
2

, (1.1)

where |ψ0〉 is an arbitrary initial state that evolves forward in time under the system Hamiltonian H0 for a time t,
and then backwards under a slightly perturbed Hamiltonian H0 + Σ. The amplitude m(t) of the LE is the overlap
between the two slightly different evolutions of the same initial state, and M(t) quantifies the departure from the
perfect overlap. Because of this important property, within the field of Quantum Information the LE is referred to as
“fidelity”17. Alternatively, M(t) can also be written as the trace of the product of two pure-state density matrices ρ
or Wigner functions W evolving with different Hamiltonians,

M(t) = tr{ρH0+Σ(t) ρH0
(t)} = (2π~)d

∫
dr

∫
dp WH0+Σ(r,p; t) WH0

(r,p; t) . (1.2)

We have used the standard definitions

ρH = |ψ〉 〈ψ| , with |ψ〉 = e−iHt/~ |ψ0〉 , (1.3)

WH(r,p; t) =
1

(2π~)d

∫
dδr exp

[
− i

~
p · δr

] 〈
r +

δr

2

∣∣∣∣ ρH
∣∣∣∣r−

δr

2

〉
, (1.4)

where d is the dimensionality of the space.
In consistency with the experimental behavior of the polarization echo, the LE of a classically chaotic one-body

Hamiltonian H0 was found to exhibit an intrinsic decay rate18. This result is valid beyond some critical value of the
perturbation. Interestingly, the decay rate is precisely the Lyapunov exponent λ of the classical system. A related
relevance of the classical dynamics had been hinted from the analysis of the entropy growth of dissipative systems19.

The purely Hamiltonian character of the model of Ref. 18, as well as the result of a classical parameter (λ) governing
a bona fide quantum property (M), attracted considerable attention. A quite intense activity has been devoted in
the last two years in order to test these predictions in various model systems and pursue further developments of the
theory20−33.

The Lyapunov behavior has been numerically obtained in models of a Lorentz gas21, kicked tops22,23, Bunimovich
stadium24, bath tube stadium25 and sawtooth map26. The analytical results have been mainly focused in the small
perturbation region. Jacquod and collaborators22 identified the regime below the critical perturbation as following
a Fermi Golden Rule through the energy uncertainty produced by the perturbation which were also analyzed with
semiclassical tools27. Prosen and collaborators28,29 showed that M(t) in the perturbative regime depends on the
specific time dependence of the perturbation correlation functions.

The Lyapunov regime bears a clear signature of the underlying classical dynamics. This observation lead Benenti
and Casati26 to propose that the independence of the decay rate on the perturbation strength is a consequence of
the quantum-classical correspondence principle. As we will analyze in this work, the situation is far less trivial. We
are going to show that this regime persists for times much larger than the Ehrenfest time (as defined by Berman and
Zavslavsky34). In addition, the quantum LE is functionally different than what a direct estimation would yield for
the classical LE (for the chaotic18, as well as the integrable30 cases). Moreover, the classical counterpart of the LE is
problematic since a wide range of dynamic behaviors is obtained in different situations31,32.

The LE has also been studied in different disordered systems20,33. It has been shown in both cases that the long
range of the perturbing potential, as emphasized in Ref. 18, is crucial in order to obtain a perturbation independent
regime.

The various approximations that the semiclassical theory of Ref. 18 relies on were further corroborated using
an initial momentum representation of the wave–packet35. This changes the sum over an uncontrolled number of
trajectories into only one, which allows the exact numerical evaluation of the semiclassical expression for the echo.

Taking the perturbation as the action of an external environment allows us to think of the LE as a measure of
the decoherence. This approach has been advocated by Zurek36, and extended37 by studying the decay of M(t) as
expressed by a product of Wigner functions (Eq. (1.2)). A semiclassical approximation to the Wigner function allows
us to separate the different contributions to the LE coming from classical and non-classical processes. As we discuss
in detail in the sequel, such distinction enables to quantify how decoherence builds in until the classical terms finally
dominate the LE.
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With the goal of addressing experimentally relevant systems38–40, we illustrate our findings in a simple model with
classical chaotic dynamics: the Lorentz gas. This system has been shown to exhibit a well defined Lyapunov regime21.
The semiclassical theory that we develop, as well as the extensive numerical results that we present in this work,
allows us to establish and characterize the universality of the perturbation independent regime.

This universality manifests itself by the robustness of the Lyapunov regime with respect to various effects. Firstly, in
the semiclassical limit of Fermi wavelength λF going to zero, the borders of the regime extend from zero perturbation
up to a classical upper bound. Secondly, and as stated above, for finite λF the Lyapunov regime extends up to times
arbitrarily larger than Ehrenfest’s time. Finally, universality is also evidenced by the insensitivity of the Lyapunov
regime with respect to the form of the perturbation or the (non-averaged) behavior of individual semiclassical initial
conditions.

The paper is organized as follows: in section II we develop the semiclassical approach to the LE with a quenched
disorder playing the role of the perturbation, as proposed in Ref. 18. We then discuss the main assumptions and set
the theoretical framework that will be further developed in the rest of the paper. In section III we consider a specific
model, the Lorentz gas, and a different perturbation than in the previous case. We first characterize the classical
dynamics of the Lorentz gas, as well as that of the perturbation, and then present a semiclassical calculation of the
LE, discussing the different regimes predicted by the theory. In section IV we concentrate the main results of this
work. The universality of the Lyapunov regime is discussed and supported with numerical results on the semiclassical
limit, the behavior after the Ehrenfest time and the effects of averaging. In section V we discuss the relation of the
LE to decoherence by studying the semiclassical approximation to the Wigner function and reinterpreting the results
of Sec. II under this new highlight. We conclude in section VI with some final remarks.

II. THE LOSCHMIDT ECHO - SEMICLASSICAL ANALYSIS

A. Semiclassical evolution

In this section we calculate the Loschmidt echo (Eq. (1.1)) for a generic chaotic system H0 and a perturbation Σ
arising from a quenched disorder. We follow the analytical scheme of Ref. 18, discussing the main assumptions and
the generality of the results. We choose as initial state a Gaussian wave-packet (of width σ), which is the closest we
can get to a classical state.

ψ(r, t=0) =

(
1

πσ2

)d/4

exp

[
i

~
p0 · (r− r0)−

1

2σ2
(r− r0)

2

]
. (2.1)

We will keep the spatial dimension d arbitrary in the analytical calculations, but it will be fixed to d = 2 for the
numerical studies of the Sec. IV. It has been shown41 that if the initial state is a superposition of N Gaussians,
the final result is the same exponential decay one obtains with a single Gaussian but normalized by N . Thus, the
assumption of Eq. (2.1) is as general as the decomposition of a given initial state into a sum of Gaussians. The time
evolution of state ψ(r, 0) is given by

ψ(r, t) =

∫
dr K(r, r; t) ψ(r, 0) , (2.2)

with the propagator

K(r,r; t) = 〈r| e−iHt/~ |r〉 . (2.3)

We will use the semiclassical expansion of the propagator42,43 as a sum over classical trajectories s(r, r, t), going
from r to r in a time t,

K(r,r; t) =
∑

s(r,r,t)

Ks(r,r; t) ,

Ks(r,r; t) =

(
1

2πi~

)d/2

C1/2
s exp

[
i

~
Ss(r, r; t)− i

π

2
µs

]
, (2.4)

valid in the limit of large energies for which the de Broglie wavelength (λF = 2π/kF = 2π~/p0) is the minimal length

scale. Ss(r,r; t) =
∫ t

0 dtLs(qs(t), q̇s(t); t) is the action over the trajectory s, and L the Lagrangian. The Jacobian
Cs = |detBs| accounts for the conservation of classical probabilities, with the matrix
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(Bs)ij = − ∂2Ss

∂ri∂rj
, (2.5)

obtained from the derivatives of the action respect to the various components of the initial and final positions. We
note µs the Maslov index, counting the number of conjugate points of the trajectory s. Since we will work with fairly
concentrated initial wave-packets, we use that ∇ri

Ss|r=r0
= −ps,i (ps,i is the i-th component of the initial momentum

of the trajectory s) and we expand the action as

Ss(r, r; t) ≃ Sŝ(r, r0; t)− pŝ · (r− r0) . (2.6)

We are lead to work with trajectories ŝ that join r0 to r in a time t, which are slightly modified with respect to the
original trajectories s(r, r, t). We can therefore write

ψ(r, t) =
∑

s(r0,r,t)

Ks(r, r0; t)

∫
dr exp

[
− i

~
ps · (r− r0)

]
ψ(r, 0)

=
(
4πσ2

)d/4 ∑

s(r0,r,t)

Ks(r, r0; t) exp

[
− σ2

2~2
(ps − p0)

2

]
, (2.7)

where we have neglected second order terms of S in (r − r0) since we assume that the initial wave packet is much
larger than the Fermi wavelength (σ ≫ λF ). Eq. (2.7) shows that only trajectories with initial momentum ps closer
than ~/σ to p0 are relevant for the propagation of the wave-packet.

B. Semiclassical Loschmidt echo

The amplitude of the Loschmidt echo, defined in Eq. (1.1), for the initial condition (2.1), can be approximated
semiclassically as

m(t) =

(
σ2

π~2

)d/2 ∫
dr
∑

s,s̃

C1/2
s C

1/2
s̃ exp

[
i

~
(Ss − Ss̃)−

iπ

2
(µs − µs̃)

]
exp

[
− σ2

2~2

(
(ps − p0)

2 + (ps̃ − p0)
2
)]

.

(2.8)
Without perturbation (Σ = 0) and restricting ourselves to the terms with s = s̃ (which leaves aside terms with a

highly oscillating phase) we simply have

m(t) =

(
σ2

π~2

)d/2 ∫
dr

∑

s(r0,r,t)

Cs exp

[
−σ

2

~2

(
ps − p2

0

)2
]

= 1 . (2.9)

We have performed the change from the final position variable r to the initial momentum ps using the Jacobian C,
and then carried out a simple Gaussian integration over the variable ps.

For perturbations Σ that are classically weak (as not to change appreciably the trajectories governed by the dynamics
of H0), we can also neglect the terms of (2.8) with s 6= s̃ and write

m(t) ≃
(
σ2

π~2

)d/2 ∫
dr
∑

s

Cs exp

[
i

~
∆Ss

]
exp

[
−σ

2

~2

[
(ps − p0)

2
]]

. (2.10)

Where ∆Ss is the modification of the action, associated with the trajectory s, by the effect of the perturbation Σ. It
can be obtained as

∆Ss = −
∫ t

0

dt Σs(q(t), q̇(t)) , (2.11)
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in the case where the perturbation appears as a potential energy in the Hamiltonian (like we discuss in this chapter).
If the perturbation is in the kinetic term of the Hamiltonian (like in Sec. III), there is an irrelevant change of sign.

Clearly individual classical trajectories will be exponentially sensitive to perturbations and the diagonal approx-
imation of Eq. (2.10) would sustain only for logarithmically short times. However, it has been argued35 that this
approximation is valid for much longer times because of the structural stability of the manifold27 which allows for the
existence of trajectories arriving at r and departing exponentially close to r0.

Within the approximation of Eq. (2.10), the LE is expressed as a double integral containing two trajectories,

M(t) =

(
σ2

π~2

)d ∫
dr

∫
dr′

∑

s(r0,r,t)

∑

s′(r0,r′,t)

CsCs′ exp

[
i

~
(∆Ss −∆Ss′)

]
exp

[
−σ

2

~2

[
(ps − p0)

2 + (ps′ − p0)
2
]]
.

(2.12)
As in Ref. 18, we can decompose the LE as

M(t) = Mnd(t) +Md(t) , (2.13)

where the first term (non-diagonal) contains trajectories s and s′ exploring different regions of phase space, while
in the second (diagonal) s′ remains close to s. Such a distinction is essential when considering the effect of the
perturbation over the different contributions.

C. Quenched disorder as a perturbation

In order to calculate the different components to the LE (Eqs. (2.12) and (2.13)) we need to characterize the
perturbation Σ. One possible choice18 is a quenched disorder given by Ni impurities with a Gaussian potential
characterized by the correlation length ξ,

Σ = Ṽ (r) =

Ni∑

α=1

uα

(2πξ2)d/2
exp

[
− 1

2ξ2
(r−Rα)

2

]
. (2.14)

The independent impurities are uniformly distributed (at positions Rα) with density ni = Ni/V, (V is the sample
volume). The strengths uα obey 〈uαuβ〉 = u2δαβ . The correlation function of the above potential is given by

CṼ (|q− q′|) = 〈Ṽ (q)Ṽ (q′)〉 = u2ni

(4πξ2)d/2
exp

[
− 1

4ξ2
(q − q′)2

]
. (2.15)

The perturbation (2.14) does not lead to the well-known physics of disordered systems, since the potential Ṽ is
not part of H0, but of Σ. Then, it acts only in the backwards propagation of the LE setup. On the other hand,
the analogy with standard disordered systems is very useful for the analytical developments. The finite range of the
potential allows to apply the semiclassical tool (provided ξkF ≫ 1), as has been extensively used in the calculation
of the orbital response of weak disordered quantum dots44–47. The finite range of the potential is a crucial ingredient
in order to bridge the gap between the physics of disordered and dynamical systems33,46 and to obtain the Lyapunov
regime18. Moreover, taking a finite ξ is not only helpful for computational or conceptual purposes, but it constitutes an
appropriate approximation for an uncontrolled error in the reversal procedureH0 → −H0+Σ as well as an approximate
description for an external environment. Without entering into a discussion about what kind of perturbation more
appropriately represents an external environment, it is reasonable to admit that the interaction with the environment
will not be local (or short range), but will extend over certain typical length.

Another important point to discuss concerning the appropriateness of our perturbation toward the representation of
an external environment, is its time dependence. Taking a quenched disorder perturbation that only acts in the second
half of the time evolution, represents a very crude approximation to the dynamics of a more realistic environment48.
Moreover, since the disorder is quenched, there is no feed–back of the system on the environment. In view of our
main result, the robustness of the Lyapunov regime respects to the details of the perturbation, this limitation should
not prevent us of extrapolating our results to realistic cases, and envisioning their experimental consequences. In
any case, a semiclassical approach to time dependent perturbations shows that the results of Ref.18 remains fairly
unchanged49.
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As discussed in the previous chapter, in the leading order of ~ and for sufficiently weak perturbations, we can
neglect the changes in the classical dynamics associated with the disorder. We simply modify the contributions to the
semiclassical expansion of the LE associated with a trajectory s (or in generally to any quantity that can be expressed
in terms of the propagators) by adding the extra phase ∆S of Eq. (2.11). For the perturbation (2.14) we can make
the change of variables q = vt̄ and write

∆Ss = − 1

v0

∫

Cc
s

V (q) dq . (2.16)

The integration is now over the unperturbed trajectory Cc
s, and we have assumed that the velocity along the trajectory

remains unchanged respect to its initial value v0 = p0/m = Ls/t.
For trajectories of length Ls ≫ ξ, the contributions to ∆S from segments separated more than ξ are uncorrelated.

The stochastic accumulation of action along the path can be therefore interpreted as determined by a random-walk
process, resulting in a Gaussian distribution of ∆Ss(Ls). This has also been verified numerically in Ref. 35. The
integration over trajectories represents a for of average for exp[ i

~
∆Ss]. The ensemble average over the propagator

(2.4) (or over independent trajectories in Eq. (2.12)) is then obtained from

〈exp
[

i
~
∆Ss

]
〉 = exp

[
−〈∆S

2
s 〉

2~2

]
, (2.17)

and therefore entirely specified by the variance

〈∆S2
s 〉 =

1

v2
0

∫

Cc
s

dq

∫

Cc
s

dq′ 〈V (q)V (q′)〉 . (2.18)

Since the length Ls of the trajectory is supposed to be much larger than ξ, the integral over q − q′ can be taken
from −∞ to +∞, while the integral on (q + q′)/2 gives a factor of Ls. We thus have

〈∆S2〉 =
Ls

v2
0

∫
dq C(q) , (2.19)

resulting in

〈exp

[
i

~
∆Ss

]
〉 = exp

[
−Ls

2ℓ̃

]
= exp

[
−v0t

2ℓ̃

]
. (2.20)

Where, in analogy with disordered systems45,46, we have defined the typical length over which the quantum phase is
modified by the perturbation as

1

ℓ̃
=

1

~2v2
0

∫
dq C(q) =

u2ni

v2
0~2(4πξ2)(d−1)/2

. (2.21)

The “elastic mean free path” ℓ̃ and the mean free time τ̃ = ℓ̃/v0 associated with the perturbation50 will constitute a
measure of the strength of the coupling.

Taking impurity averages is technically convenient, but not crucial. Results like that of Eq. (2.20) would also arrive
from considering a single impurity configuration and a large number of trajectories exploring different regions of phase
space.

D. Loschmidt echo in a classically chaotic system

Once we have settled the hypothesis with respect to the perturbation, we can go back to Eqs. (2.12) and (2.13)
calculate the two contributions to the Loschmidt echo.

In the non-diagonal term the impurity average can be done independently for s and s′, since the two trajectories
explore different regions of phase space. Therefore, upon impurity average the non-diagonal term becomes
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Mnd(t) = |〈m(t)〉|2 =

(
σ2

π~2

)d
∣∣∣∣∣

∫
dr
∑

s

Cs exp

[
−σ

2

~2
(ps − p0)

2

]
〈exp

[
i

~
∆Ss

]
〉
∣∣∣∣∣

2

. (2.22)

We have kept the same notation for the averaged and individual LE, in order to simplify the notation, and because
it will be demonstrated that this distinction is not crucial. According to Eq. (2.20) we have18

Mnd(t) =

(
σ2

π~2

)d

exp

[
−v0t

ℓ̃

] ∣∣∣∣∣

∫
dr
∑

s

Cs exp

[
−σ

2

~2
(ps − p0)

2

]∣∣∣∣∣

2

= exp

[
−v0t

ℓ̃

]
. (2.23)

This term depends on the perturbation, through ℓ̃, and can be interpreted as a Fermi golden rule result22.
In the diagonal term the trajectories s and s′ of Eq. (2.12) remain close to each other. The existence of such

types of trajectories is based on the structural stability of the manifold27,35 (opposed to the exponential sensitivity
of individual trajectories). The actions ∆Ss and ∆Ss′ accumulated by effect of the perturbation cannot be taken as
uncorrelated, like in the previous case. A special treatment should be applied to the terms arising from s ≃ s′. The
small difference between s and s′ is only considered through the difference of actions, and therefore

Md(t) =

(
σ2

π~2

)d ∫
dr

∫
dr′
∑

s

C2
s exp

[
−2σ2

~2
(ps − p0)

2

]〈
exp

[
i

~
(∆Ss −∆Ss′)

]〉
. (2.24)

Since s and s′ are nearby trajectories, we can write

∆Ss −∆Ss′ =

∫ t

0

d t̄ ∇Ṽ (qs(t̄)) · (qs(t̄)− qs′ (t̄)) . (2.25)

The difference between the intermediate points of both trajectories can be expressed using the matrix B of Eq. (2.5):

qs(t̄)− qs′ (t̄) = B−1(t̄) (ps − ps′) = B−1(t̄)B(t) (r− r′) . (2.26)

In the chaotic case the behavior of B−1(t̄) is dominated by the largest eigenvalue eλt̄. Therefore we make the
simplification B−1(t̄)B(t) = exp [λ(t̄− t)]I, where I is the unit matrix and λ the mean Lyapunov exponent. Here,
we use our hypothesis of strong chaos which excludes marginally stable regions51 with anomalous time behavior.
Assuming a Gaussian distribution for the random variable ∆Ss −∆Ss′

35, in analogy with Eq. (2.17), we have

〈
exp

[
i

~
(∆Ss −∆Ss′)

]〉
= exp

[
− 1

2~2

∫ t

0

dt̄

∫ t

0

dt̄′ exp [λ(t̄+ t̄′ − 2t)] C
∇Ṽ (|qs(t̄)− qs(t̄′)|) (r− r′)

2
]
. (2.27)

Unlike the non-diagonal case, that was obtained through the correlation potential (Eq. (2.15)), we are now led to
consider the “force correlator”

C
∇Ṽ (|q− q′|) = 〈∇Ṽ (q) · ∇Ṽ (q′)〉 =

u2ni

(4πξ2)
d/2

(
d

2ξ2
−
(

q− q′

2ξ2

)2
)

exp

[
− 1

4ξ2
(q− q′)2

]
. (2.28)

Using the fact that C
∇Ṽ is short-ranged (in the scale of ξ), and working in the limit λt≫ 1, the integrals of Eq. (2.27)

yield

〈
exp

[
i

~
(∆Ss −∆Ss′)

]〉
= exp

[
− A

2~2
|r− r′|2

]
. (2.29)

with



8

A =
(d− 1)u2ni

4λv0ξ2(4πξ2)(d−1)/2
. (2.30)

Therefore, we have

Md(t) =

(
σ2

π~2

)d ∫
dr

∫
dr′

∑

s

C2
s exp

[
−2σ2

~2
(ps − p0)

2

]
exp

[
− A

2~2
(r− r′)

2
]
.

A Gaussian integration over (r− r′) results in

Md(t) =

(
σ2

π~2

)d ∫
dr
∑

s

C2
s

(
2π~

2

A

)d/2

exp

[
−2σ2

~2
(ps − p0)

2

]
.

The factor C2
s reduces to Cs when we make the change of variables from r to p. In the long-time limit C−1

s ∝ eλt,
while for short times C−1

s = (t/m)d. Using a form that interpolates between these two limits we have

Md(t) =

(
σ2

π~2

)d ∫
dp

(
2π~

2

A

)d/2 (m
t

)d

exp [−λt] exp

[
−2σ2

~2
(p− p0)

2

]
= A exp [−λt] , (2.31)

with A = [σm/(A1/2t)]d. Since the integral over p is concentrated around p0, the exponent λ is taken as the phase-
space average value on the corresponding energy shell. The coupling Σ appears only in the prefactor (through A) and
therefore its detailed description is not crucial in discussing the time dependence of Md.

The limits of small t and weak Σ yield an infinite A, and thus a divergence in Eq. (2.31). However, our calculations

are only valid in certain intervals of t and strength of the perturbation. The times considered should verify v0t/ℓ̃ ≥ 1.
Long times, resulting in the failure of our diagonal approximations (Eqs. (2.12) and (2.24)) or our assumption that the
trajectories are unaffected by the perturbation, are excluded from our analysis. Similarly, the small values of Σ are
not properly treated in the semiclassical calculation of the diagonal term Md(t), while for strong Σ the perturbative
treatment of the actions is expected to break down and the trajectories are affected by the quenched disorder. This
last condition translates into a “transport mean-free-path”45,46 ℓ̃tr = 4(kξ)2ℓ̃ much larger than the typical dimension

R of our system. In the limit kξ ≫ 1 that we are working with, we are able to verify the condition ℓ̃tr ≫ R≫ ℓ̃.
Within the above limits, our semiclassical approach made it possible to estimate the two contributions of Eq. (2.13)

to M(t). The non-diagonal component Mnd(t) will dominate in the limit of small t or Σ. In particular, such a
contribution ensures that MΣ=0(t) = 1 (see Eq. (2.9)), and that MΣ(t= 0) = 1. The diagonal term will dominate
over the non-diagonal one for perturbations strong enough to verify

ℓ̃ <
v0
λ
. (2.32)

This crossover condition is extremely important, and will be discussed in detail in the sequel.
It is worth to notice that the width σ of the initial wave-packet is a prefactor of the diagonal contribution. The

non-diagonal term, on the other hand, is independent on the initial wave-packet. Therefore, as explained in Ref. 41,
changing our initial state (2.1) into a coherent superposition of N wave-packets would reduce Md by a factor of N
without changing Mnd. The localized character of the initial state is then a key ingredient in order to obtain the
universal behavior.

III. LOSCHMIDT ECHO IN THE TWO-DIMENSIONAL LORENTZ GAS

A. Classical dynamics of H0

We consider in this section the case where the system Hamiltonian H0 represents a two dimensional Lorentz gas,
i.e. a particle that moves freely (with speed v) between elastic collisions (with specular reflections) with an irregular
array of hard disk scatterers (impurities) of radius R. Such a billiard system is a paradigm of classical dynamics,
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FIG. 1: Schematics of a Lorentz gas showing the dispersion of two trajectories initially close to each other (with a difference δx
in the impact parameter x). The angle δθ between the two trajectories increases after each collision as described in the text.

and has been proven to exhibit mixing and ergodic behavior, while its dynamics for long distances is diffusive52–54.
The existence of rigorous results for the Lorentz gas has made of it a preferred playground to study the emergence
of irreversible behavior out of the reversible laws of classical dynamics53. Moreover, anti-dot lattices defined in a two
dimensional electron gas38–40 constitute an experimentally realizable quantum system where classical features have
been identified and measured. We will use the terms anti-dot and disk indistinctly.

In our numerical simulations we are limited to finite systems, therefore we will work in a square billiard of area L2

(with N scatterers), and impose periodic boundary conditions. The concentration of disks is

c = NπR2/L2. (3.1)

We require that each scatterer has an exclusion region Re from its border, such that the distance between the centers
of any pair of disks is larger than a value 2Re > 2R. Such a requirement is important to avoid the trapping of the
classical particle and the wave-function localization in the quantum case. The anti-dots density is set to be roughly
uniform, and the concentration is chosen to be the largest one compatible with the value of Re, obtained numerically
as c = 0.7πR2/4R2

e .
The Lorentz gas has been thoroughly studied53, and we will not discuss here its classical dynamics in detail. We

will simply recall some of its properties that will be used in the sequel, and present the numerical simulations that
allow us to extract some important physical parameters.

The chaotic character of the dynamics is a consequence of the de-focusing nature of the collisions. As illustrated in
Fig. 1, a particle with impact parameter x will be reflected with an angle

θ = π − 2 arctan

[
x√

R2 − x2

]
. (3.2)

If we consider a second particle with impact parameter x+ δx, its outgoing angle will be θ + δθ, with

δθ =
2√

R2 − x2
δx. (3.3)

The separation between the two particles that have traveled a distance s after the collision will grow as

δd ≃ δx+ δθs ≃ δx
(

1 +
2s√

R2 − x2

)
. (3.4)
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FIG. 2: Histogram of the distances between collisions with the disks, used in order to obtain numerically the mean free path ℓ
for the Lorentz gas. The solid line represents Eq. (3.5) and the dash-dotted vertical line the cut-off distance 2(Re − R).

The next collision will further amplify the separation, due to the new impact parameters and the different incidence
angles.

Within the above restrictions, the exclusion distance Re completely determines the dynamical properties of the
Lorentz gas. Among them, we are interested in the Lyapunov exponent (measuring the rate of separation of two
nearby trajectories), the elastic mean free path ℓ (given by the typical distance between two collisions), and the
transport mean free path ℓtr (defined as the distance over which the momentum is randomized and the dynamics can
be taken as effectively diffusive).

A shifted Poisson distribution

P (s) =






exp [−s/(ℓ− 2(Re −R))]

(ℓ− 2(Re −R)) exp [−2(Re −R)/(ℓ− 2(Re −R))]
if s > 2(Re −R) ,

0 if s < 2(Re −R) ,
(3.5)

is a reasonable guess for the distribution of lengths between successive collisions, which yields 〈s〉 = ℓ = v/τe, and
is consistent with numerical simulations in the range of anti-dot concentration that we are interested in (see Fig. 2).
Since velocity both v0 and momentum p0 are conserved within this model we will drop their subindex.

The elastic mean free path that we obtain from Fig. 2 compares favorably with a simple estimation of the mean
free distance in a strip of length L and width 2R with 2cL/πR disks,

ℓ ≃ πR

2c
− πR

2
=

R2
e

0.35R
− πR

2
. (3.6)

The diffusive character of the Lorentz gas can be put in evidence from the time evolution of the root mean square
displacement over a collection of initial conditions. We numerically obtain

〈
r2(t)

〉
= 2dDt (with d = 2). τtr = ℓtr/v

is the mean time required to randomize the direction and D = vℓtr/2d is the diffusion coefficient. The difference
between ℓ and ℓtr arises from the angular dependence of the scattering cross section. Taking this factor into account
we obtain a ratio ℓtr/ℓ which is in good agreement with the one obtained from the independently determined ℓ and
ℓtr.

There are known various estimations of the Lyapunov exponent of the Lorentz gas in different regimes. Considering
the three-disk problem, Gaspard et al.55 obtained

λ =
v

2Re − 2R
ln

[
2Re −R+

(
4R2

e − 4ReR
)1/2

R

]
. (3.7)
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FIG. 3: Lyapunov exponent λ of the Lorentz gas as a function of the mean free path ℓ. The black dots represent our numerical
values and the solid line the analytical estimate of Eq. (3.12). The dashed line indicates Laughlin’s approximation (Eq. (3.8)
and the open dots are the quantum values obtained from the decay of the LE (Fig. 6 in the sequel). Inset: the same plot in
log-log scale highlighting the agreement between the different approximations in the region of very small concentrations (large
ℓ).

Considering a periodic Lorentz gas (repeated Sinai billiard) Laughlin proposed the form10

λ =
v

ℓ
ln

[
1 +

βℓ

R

]
, (3.8)

where β is a geometrical factor of order 1. In the diluted limit (c≪ 1), van Beijeren and Dorfman56 showed that

λ = 2
N

L2
Rv

(
1− ln 2− 0.577− ln

[
NR2

L2

])
. (3.9)

Numerically, the procedure of Benettin et al.57 is usually followed in order to obtain Lyapunov exponents. Two
nearby trajectories are followed, and their separation is scaled down to the initial value δx0 after a characteristic time
t (that we take it to be larger than the collision time). We can then limit the numerical errors, and avoid entering the
diffusive regime where two initially close trajectories follow completely independent paths. The Lyapunov exponent
results from the average over the expanding rates in the different intervals,

λ = lim
n→∞

v

n

n∑

j=1

1

sj
ln

[
δxj

δx0

]
, (3.10)

where sj is the length of the j-th interval, and δxj the separation just before the normalization. Technically, we
should work with distances in phase-space, rather than in configuration space, but the local instability makes this
precision unnecessary.

Benettin’s algorithm can also be used for a semi-analytical calculation of the Lyapunov exponent. Taking the length
distribution of Eq. (3.5) to obtain the average separation after a collision from Eq. (3.4), and identifying the average
over pieces of the trajectory with a geometrical average over impact parameters, we can write

λ =
v

Rℓ

∫ R

0

dx ln

[
1 +

2ℓ√
R2 − x2

]
. (3.11)

Performing the integration yields

λ

v
=

1

ℓ
ln

[
ℓ

R

]
+
π

R
+

√
4

R2
− 1

ℓ2

(
arcsin

[
R

2ℓ

]
− π

2

)
. (3.12)
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As shown in Fig. 3, the above expression reproduces remarkably well the numerical calculations of the Lyapunov
exponent. It agrees also with the result of van Beijeren and Dorfman in the dilute limit, and gives good agreement
with Laughlin’s estimation.

B. Perturbation Hamiltonian

The quantum and classical fidelity measure the sensitivity of a given system to a perturbation of its Hamiltonian. In
Ref. 18 a quenched disorder environment was taken as the perturbation and the relaxation rate was found to depend
only on the system Hamiltonian; the details of the perturbation are not important beyond some critical strength.
Subsequent works have tried this perturbation25 and others20−33 confirming the universality of the result of Ref. 18.
It is also useful to verify such an universality by considering completely different perturbations on a given system.
The Lorentz gas is an ideal case, since it can be perturbed by a quenched disorder or by the distortion of the mass
tensor, introduced in Ref. 21 and briefly discussed in the sequel.

The isotropic mass tensor of H0, of diagonal components m0, can be distorted by introducing an anisotropy such
that mxx = m0(1 + α) and myy = m0/(1 + α). This perturbation is inspired by the effect of a slight rotation of the
sample in the problem of dipolar spin dynamics58, which modifies the mass of the spin wave excitations. The kinetic
part of the Hamiltonian is now affected by the perturbation, that writes as

Σ(α) = α
p2

y

2m0
− α

1 + α

p2
x

2m0
. (3.13)

In our analytical work we will stay within the leading order perturbation in α. That is,

Σ(α) =
α

2m0

(
p2

y − p2
x

)
. (3.14)

Making the particle “heavier” in the x direction (i.e. we consider a positive α) modifies the equations of motion
without changing the potential part of the Hamiltonian. It is important to notice that, unlike the case of quenched
disorder, the perturbation (3.13) is non-random, and will not be able to provide any averaging procedure by itself,
but through the underlying chaotic dynamics.

Numerical simulations of the evolution of two trajectories with the same initial conditions, the first one governed
by H0 and the second one by H0 + Σ, show that the distance in phase space grows exponentially with the same
Lyapunov exponent that amplifies initial distances. The classical dynamics is then equally sensitive to changes in the
Hamiltonian as to changes in the initial conditions59.

For a hard wall model, like the one we are considering, the perturbation (3.13) is equivalent to having non-specular
reflections. One can resort to the minimum-action principle (see appendix A) to obtain a generalized reflection law:

v′x =
vx(mxn

2
y −myn

2
x)− 2vymynxny

mxn2
y +myn2

x

, (3.15a)

v′y =
vy(myn

2
x −mxn

2
y)− 2vxmxnxny

mxn2
y +myn2

x

. (3.15b)

where v′x and v′y are the two components of the velocity after a collision against a surface defined by its normal
unitary vector (nx, ny). Eqs. (3.15) allow to show that the distortion of the mass tensor is equivalent to an area
conserving deformation of the boundaries as x→ x(1 + ξ), y → y/(1 + ξ), as used in other works on the LE24, where
ξ =
√

1 + α− 1 is the stretching parameter. An illustrative example of the equivalence of the perturbations is shown
for a stretched stadium billiard in Fig. 4. In panel a, a typical trajectory is shown; while in panels b and c we see the
trajectories resulting of a perturbation of the mass tensor or the stretch of the boundaries respectively.

C. Semiclassical Loschmidt echo

We calculate in this chapter the Loschmidt echo for the system whose classical counterpart was previously discussed;
H0 describes a Lorentz gas and Σ is given by Eq. (3.13). We adapt to the present perturbation the semiclassical
approach of Sect. II and Ref. 18. As before, we take as initial state a Gaussian wave-packet of width σ (Eq. (2.1)).

The semiclassical approach to the LE under a weak perturbation Σ is given by Eq. (2.12), with the extra phase
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FIG. 4: A single typical trajectory on the (hard wall) Bunimovich stadium, the arrows indicate the initial and final positions of
the particle. (a) Normal stadium (b) Stretched stadium. (c) Normal stadium and particle with a perturbed mass, Eqs. (3.13).
The strengths of the stretching and the mass distortion are such that the initial condition renders the same trajectory in both
cases, illustrating the corresponding map (see text).

∆Ss =

∫ t

0

dt Σs(q(t), q̇(t)). (3.16)

The sign difference with Eq. (2.11) is because the perturbation is now in the kinetic part of the Hamiltonian. On the
other hand, as explained before, this sign turns out to be irrelevant.

With the perturbation of Eq. (3.14) we have to integrate a piecewise constant function (in between collisions with
the scatterers), obtaining

∆Ss =
αm0

2

Ns∑

i=1

τi
(
2v2

yi
− v2

)
. (3.17)

We have used v2
x + v2

y = v2, and have defined τi as the free flight time finishing with the i-th collision, vyi
is the y

component of the velocity in such an interval, and Ns as the number of collisions that suffers the trajectory s during
the time t.

As we saw in chapter III A, the free flight times τi (or the inter-collision length vτi) have a shifted Poisson distribution
(Eq. (3.5) and Fig. 2). This observation will turn out to be important in the analytical calculations that follow since
the sum of Eq. (3.17) for a long trajectory can be taken as composed of uncorrelated random variables following
the above mentioned distribution. It is important to remark that, unlike the case of Sec. II, the randomness is not
associated with the perturbation (which is fixed), but with the diffusive dynamics generated by H0.

D. Non-diagonal contribution

As in the case of Sec. II, the non-diagonal contribution is given by the second moment

〈
∆S2

s

〉
=
α2m2

0

4

〈
Ns∑

i,j=1

τiτj
(
2v2

yi
− v2

) (
2v2

yj
− v2

)〉
. (3.18)

Separating in diagonal (i = j) and non-diagonal (i 6= j) contributions (in pieces of trajectory) we have

〈
∆S2

s

〉
=
α2m2

0Ns

4

[〈
τ2
i

〉 (
4
〈
v4

yi

〉
− 4v2

〈
v2

yi

〉
+ v4

)
+ (Ns − 1) 〈τi〉2

(
4
〈
v2

yi

〉2 − 4v2
〈
v2

yi

〉
+ v4

)]
. (3.19)

We have assumed that different pieces of the trajectory (i 6= j) are uncorrelated, and that within a given piece i, τi
and vyi

are also uncorrelated. According to the distribution of time-of-flights (3.5) we have
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〈τ〉 = τe , (3.20a)
〈
τ2
〉

= 2τ2
e . (3.20b)

Assuming that the velocity distribution is isotropic (P (θ) = 1/2π, where θ is the angle of the velocity with respect
to a fixed axis) is in good agreement with our numerical simulations, and results in

〈
v2

y

〉
= v2

〈
sin2 θ

〉
=
v2

2
, (3.21a)

〈
v4

y

〉
= v4

〈
sin4 θ

〉
=

3v4

8
. (3.21b)

We thus obtain that 4
〈
v2

yi

〉2− 4v2
〈
v2

yi

〉
+ v4 = 0, implying a cancellation of the cross terms of

〈
∆S2

s

〉
, consistently

with the lack of correlations between different pieces that we have assumed. We therefore have

〈
∆S2

s

〉
=
α2m2

0Nsτ
2
e v

4

4
. (3.22)

For a given t, Ns is also a random variable, but for t≫ τe we can approximate it by its mean value t/τe and write

〈
∆S2

s

〉
=
α2m2

0v
4τet

4
. (3.23)

We therefore have for the average echo amplitude

〈m(t)〉 ≃ exp

[
−α

2m2
0v

4τet

8~2

](
σ2

π~2

)d/2 ∫
dr
∑

s

Cs exp

[
−σ

2

~2
(ps − p0)

2

]
= exp

[
−vt

2ℓ̃

]
, (3.24)

where we have again used Cs as a Jacobian of the transformation from r to ps and we have defined an effective mean
free path of the perturbation by

1

ℓ̃
=
m2

0v
2ℓ

4~2
α2 . (3.25)

The effective mean free path ℓ̃ = v τ̃ should be distinguished from ℓ = vτe since the former is associated to the
dynamics of Σ and H0, while the latter is only fixed by H0. Obviously, our results are only applicable in the case of
a weak perturbation verifying ℓ̃≫ ℓ. From Eq. (3.24) we obtain the non-diagonal component of the LE as

Mnd(t) = |〈m(t)〉|2 = exp

[
−vt
ℓ̃

]
. (3.26)

In the next chapters we study the conditions under which the correlations not contained in the FGR approximation
dominate the LE, while in Sec. IV we will test the above results against numerical simulations.

E. Diagonal contribution

As in Sec. II, we have to discuss separately the contribution to the LE (Eq. (2.12)) originated by pairs of trajectories
s and s′ that remain close to each other. In that case the terms ∆Ss and ∆Ss′ are not uncorrelated. The corresponding
diagonal contribution to the LE is given by Eq. (2.24), and then we have to calculate the extra actions for s ≃ s′. As
in Fig. 1, we represent by θ (θ + δ) the angle of the trajectory s (s′) with a fixed direction (i.e. that of the x-axis).
We can then write the perturbation (Eq. (3.13)) for each trajectory as

Σs =
α

2m0
p2 (2 sin2 θ − 1) , (3.27a)

Σs′ =
α

2m0
p2 (2 sin2 θ − 2δ sin 2θ − 1) +O(δ2) . (3.27b)
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Assuming that the time-of-flight τi is the same for s and s′ we have

∆Ss −∆Ss′ =
αp2

m0

∫ t

0

dt δ(t) sin
[
2θ(t)

]
. (3.28)

The angles δ alternate in sign, but the exponential divergence between nearby trajectories allows to approximate
the angle difference after n collisions as |δn| = |δ1| eλnτe . A detailed analysis of the classical dynamics shows that
the distance between the two trajectories grows with the number of collisions as d1 = |δ1| vτ1, d2 = d1 + |δ2| vτ2, and
therefore

dNs
≃ v

Ns∑

j=1

|δj | τj ≃ vτe |δ1|
Ns∑

j=1

e(j−1)λτe = ℓ |δ1|
eNsλτe − 1

eλτe − 1
. (3.29)

By eliminating |δ1| we can express an intermediate angle δ(t) as a function of the final separation |r− r′| = dNs
,

δ(t) ≃ |r− r′|
ℓ

eλτe − 1

eλt − 1
eλt , (3.30)

where again we have used that t = Nsτe is valid on average. Assuming that the action difference is a Gaussian random
variable, in the evaluation of Eq. (2.24) we only need its second moment

〈
(∆Ss −∆Ss′)

2
〉
≃ α2m2

0v
4 |r− r′|2

ℓ2

(
eλτe − 1

eλt − 1

)2 〈∫ t

0

dt

∫ t

0

dt
′
eλt+λt′ sin

[
2θ(t)

]
sin
[
2θ(t

′
)
]〉

. (3.31)

As before, we assume that the different pieces are uncorrelated and the angles θi uniformly distributed. Therefore
〈sin [2θi] sin [2θj]〉 = δij/2 and

〈
(∆Ss −∆Ss′)

2
〉
≃ α2

2

(
m0v

2

ℓ

)2

|r− r′|2
(
eλτe − 1

eλt − 1

)2 Ns∑

i=1

〈∫ ti

ti−1

dt eλt

〉2

(3.32)

=
α2

2

(
m0v

2

λℓ

)2

|r− r′|2
(
eλτe − 1

)4

(eλt − 1)
2

e2λNsτe − 1

e2λτe − 1
= A |r− r′|2 , (3.33)

where we have taken the limit λt≫ 1, and defined

A =
α2

2

(
m0v

2

λℓ

)2 (
eλτe − 1

)3

eλτe + 1
. (3.34)

Our result (3.33) is analogous to Eq. (2.29) obtained in the case of a perturbation by a quenched disorder. Obviously,
the factor A is different in both cases, but we use the same notation to stress the similar role as just a prefactor of
Md. Performing again a Gaussian integral of Md over r− r′ we obtain

Md(t) =

(
σ2

π~2

)d ∫
dr
∑

s

C2
s

(
2π~

2

A

)d/2

exp

[
−2σ2

~2
(ps − p0)

2

]
. (3.35)

Under the same assumptions than in Sec. II D, we are lead to a result equivalent to that of Eq. (2.31),

Md(t) ≃ Ae−λt, (3.36)

with A = [σm0/(A
1/2t)]d. Therefore, for long times the diagonal part of the Loschmidt echo decays with a rate given

by the classical Lyapunov exponent of the system,

lim
t→∞

(
−1

t
ln
[
Md(t)

])
= λ. (3.37)

Of course this limit actually means t≫ 1/λ but still lower than the time at which either localization or finite size effect
appears. In the next chapter we will study the competition between the diagonal and non-diagonal contributions.
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F. Diagonal vs. non-diagonal contributions

As we have previously shown, the Loschmidt echo is made out of non-diagonal and diagonal components, and within
the time scales above specified, it can be written as

M(t) = exp

[
−vt
ℓ̃

]
+A exp [−λt] . (3.38)

Such a result holds for the perturbation Σ that we have discussed in this section (Eq. (3.13)), as well as for the

quenched disorder of Sec. II (Eq. (2.14). The only difference lays in the form of the “elastic mean free path” ℓ̃ and
the prefactor A, both of which are perturbation dependent. The decay of the LE will be controlled by the slowest of
the two rates. A weak perturbation implies ℓ̃ > v/λ and a dominance of the non-diagonal term, while for sufficiently

strong perturbations verifying ℓ̃ < v/λ (but weak enough in order not to modify appreciably the classical trajectories),
the diagonal term (governed by the Lyapunov exponent) sets the decay of the LE. In Ref. 22 the regime of dominance
of the non-diagonal and diagonal component has been respectively interpreted and referred to as a Fermi Golden Rule
Lyapunov regimes and we will use both terminologies in the discussions that follow.

The Lyapunov regime is remarkable in the sense that its decay rate is an intrinsic property of the system and does
not depend on the perturbation that gives rise to the decay. This behavior, predicted in Ref. 18 has been observed in
numerical simulations done on a number of systems20−33.

From the previous discussion it is clear that the Lyapunov regime can only be observed beyond a critical value
of the perturbation. The condition stated above for the strength of the perturbation, along with Eq. (3.25), yields
for the model discussed in this section a critical value of the perturbation parameter α beyond which the Lyapunov
regime is obtained,

αc =
2~

m0

√
λ

v3ℓ
. (3.39)

We will discuss in Sec. IV the physical consequences of the above critical value and its dependence on various physical
parameters.

We finish this chapter with the discussion of the perturbation dependent (non-diagonal) regime. In this Fermi

Golden Rule regime the LE is equal to the return probability P (t) = |〈ψ0| exp [−i (H0 + Σ) t/~] |ψ0〉|2, whose decay
rate does not show saturation at the Lyapunov exponent but rather follows Eq. (3.25) for the whole range of
parameters60. The full connection between the exponent of Eq. (3.25) and the one we would get from a complete
FGR approach, was clarified using a random matrix treatment25. In fact, a rough estimation of the Fermi golden
rule is obtained considering a particle moving along the principal axis ←→m of a square box of sides Lx = Ly = ℓ. The
available density of states 1

∆ , corresponds to a 1-d tube of length ℓ. Hence

1

τ̃
=

2π

~
|Σ|2 1

∆

≃ 2π

~

∣∣∣∣α
p2

2m0

∣∣∣∣
2

× ℓm0

π~p

= m2 v
3

4~2
ℓα2,

in agreement with the semiclassical calculation of Eq. (3.25). Of course, this estimation does not make justice to
the chaotic nature of H0. This breaks the selection rules of our simple perturbation and enables a random matrix
approximation for Σ, that mixes eigenstates of H0 which follow a Wigner-Dyson statistics. Hence the perturbation
breakdown of the FGR regime can not be calculated from the parameters introduced above.

The LE has also been studied in systems where the perturbation structure prevents the application of the Fermi
Golden Rule. The result is that in general the decay rate of the LE before the Lyapunov regime is given by the width
of the local density of states of the perturbation, which for particular systems coincides with the exponent given by
the FGR24.



17

FIG. 5: Time decay of the Loschmidt echo M(t) for different values of the perturbation strength (α) and concentration of
impurities (c). (a) c = 0.157 and α =0.004, 0.007, 0.01, 0.015, 0.02, 0.03, 0.05, 0.07, 0.1 (from top to bottom); (b) c = 0.195
and α =0.004, 0.007, 0.01, 0.015, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.1, 0.15; (c) c = 0.289 and α =0.004, 0.007, 0.01,
0.015, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07. The time is measured in units of ~/V , where V is the hopping term of the tight-binding
model (see appendix B). The doted lines represent the best fits to the decay, as described in the text.

IV. UNIVERSALITY OF THE LYAPUNOV REGIME

A. Correspondence between semiclassical and numerical calculations

The semiclassical results obtained in the previous sections are valid in the small wavelength limit, and relay on
various uncontrolled approximations. It is then important to perform numerical calculations for our model system in
order to compare against the semiclassical predictions, and to explore parameter regimes inaccessible to the theory.
In this section we use the same numerical method of Ref. 21 for the Lorentz gas (described in detail in appendix B),
and extend the results in order to sustain the discussion on the universality of the Lyapunov regime. We will first
focus on the behavior of the ensemble averaged Loschmidt echo, followed by a thorough discussion of the averaging
procedure and the individual behavior.

We typically worked with disks of radius R = 20a , and with a Fermi wavelength λF = 2π/kF = 16/3a. Here,
a is the irrelevant lattice unit of our tight-binding model, which is decreased until the results only depend on the
relation between physical parameters. The smallest system-size allowing to observe the exponential decay of M(t)
over a large interval was found to be L = 200a which means the consideration of a Hilbert space with 4×104 states.
We calculated M(t) for different strengths of the perturbation α and concentration of disks c. In Fig. 5 we show our
results for c = 0.157, 0.195 and 0.289 (panels a to c respectively), and different values of α.

The time evolution of the LE presents various regimes. Firstly, for very short times, M(t) exhibits a Gaussian decay,
M(t) = exp

[
−bα2t2

]
, where b is a parameter that depends on the initial state, the dynamics of H0 and the form of

the perturbation Σ. This initial decay corresponds to the overlap of the perturbed and unperturbed wave-packets
whose centers separate linearly with time by the sole effect of the perturbation. This regime ends approximately at
the typical time of the first collision.

Secondly, for intermediate times we find the region of interest for the semiclassical theory. In this time scale the
LE decays exponentially with a characteristic time τφ. We reserve the symbol τφ for the decay rate, in view of its
interpretation in terms of quantum decoherence (as we discuss in Sec. V). For small perturbations, τφ depends on α.
We observe that for all concentrations there is a critical value αc beyond which τφ is independent of the perturbation.



18

FIG. 6: Extracted values of the decay rate 1/τφ of the LE as a function of the perturbation strength α for the three concentrations
of Fig. 5. The rates are normalized to the group velocity of the initial wave-packet ν (1/(ντφ)) is given in units of a−1; c = 0.157
(circles), 0.195 (squares) and c = 0.289 (triangles). The solid lines are the corresponding classical Lyapunov exponents and the
dashed lines are fits to the quadratic behavior predicted by Eq. (3.25). The predicted coefficients for the three concentrations
are 72a−1, 55a−1 and 33a−1, while the obtained ones are 92a−1, 50a−1 and 37a−1 respectively. In the inset, a log-log scale of
the same data to show the quadratic increase of 1/τφ for small perturbations.

Clearly, the initial perturbation-dependent Gaussian decay prevents the curves to be superimposed.
Finally, for very large times the LE saturates at a value M∞ that depends on the system size L. This regime

is discussed in detail in the next chapters. However, let us observe that in the crossover between the exponential
decay and the long time saturation there is a power-law decay with a perturbation independent exponent. This is
a manifestation of the underlying diffusive dynamics that leads to the isotropic state. Therefore, it could be related
to the Ruelle-Perricot resonances of the classical Perron-Frobenius evolution operator used to calculate a classical
version of the LE32.

In order to compare our numerical results of M(t) with the semiclassical predictions, we extract τφ by fitting lnM(t)
to ln [A exp(−t/τφ) +M∞] . The dashed lines in Fig. 5 correspond to the best fits obtained with this procedure. The
values of τφ for the different concentrations are shown as a function of the perturbation strength in Fig. 6. In agreement
with our analytical results of the previous section, we see that 1/τφ grows quadratically with the perturbation strength
up to a critical value αc, beyond which a plateau appears at the corresponding Lyapunov exponent. The dashed
lines are the best fit to a quadratic behavior. The values obtained in this way agree with those predicted by the
semiclassical theory (Eq. (3.25)) for the non-diagonal (FGR) term. The saturation values above αc are well described
by the corresponding Lyapunov exponents (solid lines), in agreement with the semiclassical prediction (Eq. (3.37)).
The very good quantitative agreement between the semiclassical and numerical calculations for the Lorentz gas (as
well as in the case of other models22,24,25) strongly supports the generality of the saturation of τφ at a critical value
of the perturbation strength.

The FGR exponent, which depends on H0 but not much on its chaoticity30, is given by the typical squared matrix
element of Σ, and the density of connected final states 1/∆. Hence, different H0 change the wave-functions. That is

why we observe that, for fixed perturbation strength α, the factor v/ℓ̃ depends on the concentration of impurities of
H0 (see inset of Fig. 6, where a log-log scale has been chosen in order to magnify the small perturbation region).

Notably, the dependence of v/ℓ̃ with H0 leads to a counter-intuitive effect (clearly observed in the inset of Fig. 6),
namely that the critical value needed for the saturation of 1/τφ is smaller for less chaotic systems (smaller λ). The
reason for this is that in more dilute systems Σ is constant over larger straight pieces of trajectories (in between
collisions), leading to a larger perturbation of the quantum phase and resulting in a stronger effective perturbation.

B. Universality of the Lyapunov regime in the semiclassical limit

Our semiclassical analysis yielded a critical value of the perturbation to enter in the Lyapunov regime (Eq. (3.39)),
that vanishes in the semiclassical limit, αc → 0 for ~ (or λF ) → 0, implying the collapse of the Fermi Golden Rule
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FIG. 7: Decay rates 1/τφ for different wavelengths λF of the initial wave-packet for a concentration c = 0.195 with the same
units as in Fig 6. Solid line: classical Lyapunov exponent. Dashed line: the FGR quadratic behavior. Note that for decreasing
λF the critical perturbation diminishes, implying a collapse of the Fermi Golden Rule regime.

regime. This behavior is reproduced by our numerical calculations (Fig. 7). There, we decreased λF while keeping
fixed the size σ of the initial wave packet. A point that should not be over-sighted is that the perturbation Σ (Eq.
(3.13)), for a given value of the parameter α, scales with the energy in a way that the underlying classical trajectories
are always affected in the same way by the perturbation. The extracted crossover values of αc are in quantitative
agreement with Eq. (3.39), decreasing with λF in the interval that we were able to test.

Other choices of the perturbation Σ, such as the quenched disorder of Refs. 18 and 25, can be shown to give
critical values that decrease with decreasing ~ as in Eq. (3.39), provided that the perturbation is scaled to the proper
semiclassical limit. That is, for a fixed perturbation potential, we should take the limit of λF → 0. As a result, if
we keep ~ constant and decrease λF by increasing the particle energy, we should scale up the perturbation potential
consistently (assuming that H0 generates the same dynamics at all energies).

We conclude that, in the semiclassical limit, any perturbation will be strong enough to put us in the Lyapunov
regime, in consistency with the hypersensitivity expected for a classical system. This is not unexpected as in this
limit the Ehrenfest time diverges and the correspondence principle should prevail.

We can draw a the critical perturbation strength separating FGR from Lyapunov regimes versus a scaling parameter
determined by the particle energy (or inverse ~), as shown in Fig. 8. The shaded region corresponds to the Fermi
Golden Rule regime and the clear one to the Lyapunov regime. The line that divides both phases is given by Eq. (3.39),
and the dots correspond to numerical values of αc extracted from Figs. 6 and 7. Of course, there is another transition
from FGR to perturbation appearing when Σ ≃ ∆, which we avoid drawing since α∆ ≪ αc. This perturbative value
also goes to zero in the semiclassical limit of λF → 0. Also the Lyapunov regime is bounded from above by an ~

independent critical value αp marking the classical breakdown that we discuss bellow.
The interesting conceptual feature highlighted by Fig. 8, is the importance of the order in which we take the

limits of Σ and λF going to zero. Two distinct results are obtained for the different order in which we can take this
double limit. As depicted in the figure (with arrows representing the limits), limλF →0 limΣ→0 1/τφ = 0. On the other
hand, taking the inverse (more physical) ordering limΣ→0 limλF →0 1/τφ = λ the semiclassical result is obtained. The
resulting “phase diagram” representation for the different regimes of the LE serves us to remember that most often
one is working in the thermodynamic side corresponding to the Lyapunov region.

Our semiclassical theory clearly fails when the perturbation is strong enough (or the times long enough) to appre-
ciably modify the classical trajectories. This would give an upper limit (in perturbation strength) for the results of
Sec. III. A more stringent limitation comes from the finite value of ~, due to the limitations of the diagonal approx-
imations and linear expansions of the action that we have relied on. In other systems, like the quenched disorder in
a smooth stadium25, the upper critical value of the perturbation (for exiting the Lyapunov regime) can be related

to the transport mean free path of the perturbation ℓ̃tr, which is defined as the length scale over which the classical
trajectories are affected by the disorder45.

We can obtain in our system an estimate of ℓ̃tr by considering the effect of the perturbation on a single scattering
event. The difference δθ between the perturbed and unperturbed exit angles after the collision can be obtained using
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FIG. 8: Regime diagram for the Loschmidt echo as a function of the perturbation and the energy (or inverse ~). The grayed
area is the FGR regime, while the clear one is the Lyapunov regime. The line that divides both regimes is Eq. (3.39). The dots
are the numerical values obtained from Figs. 6 and 7. The arrows schematize the possible ordering of the classical double limit
of the perturbation and the wavelength going to zero. Notice how the lower one gives always zero while the upper (correct)
one gives λ since it remains always in the Lyapunov regime.

Eqs. (3.15), which results in

δθ ∼ 4nxny

(v · n
v

)2

α , (4.1)

where v is the initial velocity of the particle and n is the normal to the surface.
Assuming that the movement of the particle is not affected by chaos (non-dispersive collisions), one can do a random

walk approach and estimate the mean square distance after a time τtr from the fluctuations of the angle in Eq. (4.1).
We estimate the transport mean free time as that at which the fluctuations are of the order of R, and obtain

ℓ̃tr ≃
4R2

3α2ℓ
, (4.2)

assuming a uniform probability for the angle of the velocity as before. Eq. (4.2) is used to get the upper bound
perturbation αp for the end of the Lyapunov plateau,

αp =

√
4λR2

3ℓv
. (4.3)

We obtain αp ≃ 0.23, 0.29 and 0.43 respectively for increasing magnitude of the three concentrations shown in Fig. 6.
It is rather difficult to reach numerically these perturbations in our system, since the initial Gaussian decay drives
M(t) very quickly towards its saturation value, preventing the observation of an exponential regime. Despite this
difficulty, we observe in Fig. 7 that Lyapunov regime is a plateau that ends up for sufficiently strong perturbations.
For the range we could explore the limiting values are in qualitative agreement with the estimation from Eq. (4.3).

C. Ehrenfest time and thermodynamic limit

We studied in the previous chapter the behavior of the Lyapunov regime in the semiclassical limit ~ → 0; let us
now turn our attention to the consequences of having a finite value of ~. In this case, one expects the propagation of a
quantum wave-packet to be described by the classical equations of motion up to the Ehrenfest time tE , after which the
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FIG. 9: M(t) for two systems with the same number of states N but different sizes L, showing that the saturation time does
not depend on N but on the ratio L/σ. The Ehrenfest time is marked with an arrow.

quantum-classical correspondence breaks down34. Typically, tE is the time when interference effects become relevant,
and in a classically chaotic system it typically scales as ln[~].

In other systems where the Lyapunov regime of the LE has been observed, such as chaotic maps or kicked systems,
tE coincides with the saturation time ts = 1/λ ln[N ]. This is because in these systems the number of states N plays
the role of an effective Planck’s constant ~eff = 1/N . Therefore, when in these systems the LE is governed by a
classical quantity, the whole range of interest occurs before the Ehrenfest time. This observation lead Benenti and
Casati26 to propose that the independence of the decay rate on the perturbation strength is a trivial consequence of
the quantum-classical correspondence before tE .

In the Lorentz gas, however, we can differentiate between the time scales ts and tE by appropriately controlling the
parameters. The saturation time is given by

ts ≃
2

λ
ln
L

σ
. (4.4)

The Ehrenfest time, defined as the time it takes for a minimal wave-packet of wavelength λF to spread over a distance
of the order of R54, is given by

tE ≃
1

λ
ln

2R

λF
. (4.5)

Our numerical calculations support these approximations. We show in Fig. 9 M(t) for two systems with the same
number of states N (hence same ~eff), but two different sizes L. N is controlled by the discretization step a = L/N .
The different saturation values (and times) observed imply that for the Lorentz gas tE and ts are independent of each
other. Clearly we can study the LE for times arbitrarily larger than tE by increasing the system size L, which controls
ts, and keeping all other parameters (including tE , marked with a dashed line in Fig. 9) fixed. We can see that the
exponential decay of the LE continues for times larger than tE , up to the saturation time.

The above results are further evidence of the universality of the Lyapunov regime, for it persists for arbitrarily large
times in the thermodynamic limit of the size of the system going to infinity. This is exemplified in Fig. 10, where
we show M(t) for increasing sizes (L = 200a, 400a and 800a) for a fixed concentration (c = 0.195) and perturbation
(α = 0.024). Notice how the exponential decay regime extends, as L grows, for times larger than tE , where the
correspondence principle does not prevail. The survival of a classical signature of the quantum dynamics after the
Ehrenfest time is due to a more complex effect, namely the decoherence that washes out terms of quantum nature.
We will discuss this process in detail in the next chapter.

In the inset of Fig. 10 we see the saturation value M∞ as a function of the inverse system size 1/L2. This dependence
was expected from earlier works on the LE16. Supposing that for long times the chaotic nature of the system will
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FIG. 10: M(t) for different system sizes L = 200, 400 and 800 showing the longer exponential regime for larger L. Inset:
saturation value M∞ as a function of inverse system size. The straight line is the fit M∞ = (0.6)(σ/L)2.

equally mix the Ñ = (L/σ)2 levels appreciably represented in the initial state with random phases φj , we write

M∞ =
1

Ñ2

∣∣∣∣∣∣

∑

j

exp
[
i(φj − φ′j)

]
∣∣∣∣∣∣

2

=
1

Ñ
. (4.6)

We also show in a straight line the best fit to the data, M∞ = (0.6± 0.1) (σ/L)
2

which confirms the prediction.

D. Individual vs. ensemble-average behavior

In order to make analytical progress, in our semiclassical calculations and in those of Ref. 18, an ensemble average
was introduced (over realizations of the quenched disordered perturbation or over initial conditions). This approx-
imation raises the question of whether the exponential decay of M(t) is already present in individual realizations
or, on the contrary, the averaging procedure is a crucial ingredient in obtaining a relaxation rate independent of the
perturbation61.

As it was discussed in Sects. II and III, for trajectories longer than the correlation length ξ of the perturbation,
the contributions to ∆S from segments separated by more than ξ are uncorrelated. This leads us to consider that the
decay observed for a single initial condition will be equivalent to that of the average. In this section we test this idea
numerically.

For large enough systems presenting a large saturation time, we expect M(t) to fluctuate around an exponential
decay. This expectation is clearly supported by our numerical results shown in Fig. 11, where we present M(t) for
three different initial conditions in a system with L = 800a and fixed α = 0.024. An exponential decay with the
semiclassical exponent is shown for comparison (thin solid line).

In order to obtain the exponent of the decay with a good precision, we can calculate M(t) for a single initial
condition in a large enough system. Alternatively, our results show that it is correct to obtain the exponent through
an ensemble average to reduce the size of the fluctuations. However, as the former method is computationally much
more expensive, we resort to the latter.

This situation is analogous to the classical case where one obtains the Lyapunov exponent from a single trajectory
taking the limit of the initial distance going to zero and the time going to infinity, or else resorts to more practical
methods like Benettin et al algorithm that average distances over short evolutions.

Notice that in the Lorentz gas the average over initial conditions and the average over realizations of the impurities
positions are equivalent. In all cases we have implemented the last choice for being computationally convenient, and
we use the term initial conditions to refer also to realizations of H0.
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FIG. 11: M(t) for three different single initial conditions of the wave-packet. All the curves oscillate around the straight line,
which is the decay corresponding to the Lyapunov exponent.

In particular for our calculations, the average is constrained to those systems where the classical trajectory of the
wave-packet collides with at least one of the scatterers. This restriction helps avoiding those configurations where a
“corridor” exists, in which case M(t) presents a power-law decay possibly related to the behavior found in integrable
systems30.

E. Effect of the average procedure

The averaging of quantities that fluctuate around an exponential decay is a delicate matter, since different procedures
can lead to quite different results. In particular, for the LE it has been noted that averagingM(t) over initial conditions
can result in an exponential decay different than the one of a single initial condition23,61. This effect can be attained,
for instance, if we suppose that M(t) for single conditions decays exponentially with a fluctuating exponent λ + δλ,
where δλ is randomly distributed with uniform probability between −σλ and σλ. Given the exponential dependence
of M(t) in λ, the phase space fluctuations of the Lyapunov exponent will induce a difference between the average
lnM(t) and that of M(t). The former procedure is more appropriate in order to have averages of the order of the
typical values. On the other hand, if the fluctuations of the exponent are small, both procedures give similar results.
This is the situation we found in our model system.

For the Lorentz gas we calculated 〈M(t)〉 and 〈lnM(t)〉 and extracted the decay rates of the exponential regime
using the fit described in Sec. IVA. Typical results are shown in Fig. 12 as a function of the perturbation. We observe
that both averaging procedures give values of τφ that are indistinguishable from each other within the statistical error.

A typical set of curves of M(t) averaged following the two procedures is shown in the inset of Fig. 12. We can
see that, even though for the short and long time regimes the two procedures give slightly different results, the
intermediate exponential decay regime has approximately the same decay rate in both cases.

V. ANALYSIS OF DECOHERENCE THROUGH THE LOSCHMIDT ECHO

A. Classical evolution of the Wigner function

As discussed in the introduction, the Loschmidt echo can be obtained from the evolution of the Wigner function
with the perturbed and unperturbed Hamiltonians (Eq. (1.2)). Such a framework is particularly useful in the study of
decoherence, as the Wigner function is a privileged tool to understand the connection between quantum and classical
dynamics36,43.

The evolution of the wave-functions in terms of the propagators (Eq. (2.2)) can be used to express the time-
dependence of the Wigner function as
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FIG. 12: Values of τφ extracted from averaging the echo 〈M〉 (triangles) and the logarithm of the echo 〈log M〉 (circles) for
c = 0.289 and L = 200, as a function of the perturbation strength. Both averaging procedures yield approximate the same
decay rate. Inset: typical curves of 〈M〉 and 〈log M〉 for the same set of parameters. The straight dotted line represents an
exponential decay with a rate given by the semiclassical prediction.
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The semiclassical expansion of the propagators (Eq. (2.4)) leads to the propagation of the Wigner function by
“chords”62–64, where pairs of trajectories (s, s′) traveling from (r− δr/2, r + δr/2) to (r− δr/2, r + δr/2) have to be
considered (Fig. 13). In the leading order in ~ we can approximate the above propagators by sums over trajectories
going from r to r
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where ps (ps) and ps′ (ps′) are the initial (final) momenta of the trajectories s and s′, respectively. The semiclassical
evolution of the Wigner function is given by
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The dominant contribution arises from the diagonal term s = s′

Wc(r,p, t) =

∫
dr

∑

s(r,r,t)

Cs δ (p− ps) W (r,ps; 0) . (5.3)
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FIG. 13: Schematics of the classical trajectories involved in the semiclassical approximation to the propagation of a Wigner
function.

Using the fact that Cs is the Jacobian of the transformation from r to ps, we have

Wc(r,p; t) =

∫
dps δ (p− ps) W (r,ps; 0) , (5.4)

where the trajectories considered now are those that arrive to r with momentum p. We note (r,p) the pre-image of
(r,p) by the equations of motion acting on a time t. That is, (r,p) = Xt(r,p). The momentum integral is trivial,
and we obtain the obvious result

Wc(r,p; t) = W (r,p; 0) , (5.5)

with (r,p) = X−1
t (r,p). Since Xt conserves the volume in phase-space, at the classical level the Wigner function

evolves by simply following the classical flow.

B. Fine structure of the Wigner function and non-classical contributions to the Loschmidt echo

As indicated in Eq. (1.2), the Loschmidt echo is given by the phase-space trace of two Wigner functions associated
with slightly different Hamiltonians (H0 and H0 + Σ). In order to facilitate the discussion, we introduce the density
(or partial trace) fΣ writing the LE as
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The semiclassical evolution of fΣ is given by four trajectories, as illustrated in Fig. 14.
As we have consistently done in this work, we take Gaussian wave-packet (of width σ) as initial state. Its associated

Wigner function reads

W (r,p; 0) =
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(π~)d
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2σ2

~2

]
. (5.8)
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FIG. 14: Four classical trajectories used to compute semiclassically the Loschmidt echo through the evolution of two Wigner
functions associated with different Hamiltonians.

Assuming that Σ constitutes a small perturbation, after a few trivial integrations we obtain
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Where we have defined

P = ps + ps′ − ps̃ − ps̃′ . (5.10)

Now the trajectories s and s′ (s̃ and s̃′) arrive to the same final point r−δr/2 (r+δr/2). Since the initial wave-packet
is concentrated around r0, we can further simplify and work with trajectories s and s′ (s̃ and s̃′) that have the same
extreme points. Therefore, we have
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with

R = ps + ps′ + ps̃ + ps̃′ . (5.12)

By the same considerations as before, we can reduce all four trajectories to start at the center r0 of the initial
wave-packet (Fig. 15)

fΣ(r, t) = (4πσ2)d

∫
dδr

∑

s,s′

∑

s̃,s̃′

exp

[
− (P2 + S2 + T 2)σ2

8~2

]
exp

[
−2σ2

~2

(R
4
− p0

)2
]

× Ks

(
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2
, r0; t

)
K∗

s′

(
r− δr

2
, r0; t

)
K∗

s̃

(
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δr

2
, r0; t

)
Ks̃′

(
r +

δr

2
, r0; t

)
, (5.13)
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FIG. 15: For fairly localized initial wave-packet, the four classical trajectories contributing to the LE can be reduced to those
starting at its center r0.

with

S = ps − ps′ + ps̃ − ps̃′ , (5.14a)

T = ps + ps′ − ps̃ − ps̃′ . (5.14b)

Given that

P2 + S2 + T 2 = (ps − ps′)
2
+ (ps − ps̃)

2
+ (ps − ps̃′)

2
+ (ps′ − ps̃)

2
+ (ps′ − ps̃′)

2
+ (ps̃ − ps̃′)

2
, (5.15)

and since the pairs of trajectories (s, s′) and (s̃, s̃′) have the same extreme points, the dominant contribution to fΣ
will come from the terms with s = s′ and s̃ = s̃′. Such an identification minimizes the oscillatory phases of the
propagators, and corresponds to the first diagonal approximation of the calculation of Sec. II and Ref. 18. Within
such an approximation we have

fΣ(r, t) =

(
σ2

π~2

)d ∫
dδr

∑

s,s̃

Cs Cs̃ exp

[
− (ps − ps̃)

2
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2~2
− 2σ2

~2

(
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2
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)2
]

exp
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i

~

(
∆Ss

(
r− δr

2
, r0, t

)
−∆Ss̃

(
r +

δr

2
, r0, t

))]
, (5.16)

As in Eq. (2.10), ∆Ss,s̃ is the extra contribution to the classical action that the trajectory s (s̃) acquires by effect of
the perturbation Σ.

We have two different cases, depending on whether or not there are trajectories leaving from r0 with momentum
close to p0 that arrive to the neighborhood of r after a time t. In the first case r is in the manifold that evolves
classically from the initial wave-packet (Fig. 16). Such a contribution is dominated by the terms where the trajectory
s̃ remains close to its partner s, and calling fd

Σ this diagonal component, we get

fd
Σ(r, t) =

(
σ2

π~2

)d ∫
dδr

∑

s,s̃

C2
s exp
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−2σ2

~2
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2
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)
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2
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))]
,

(5.17)
Assuming, as in Sec. II and Ref. 18, that H0 stands for a chaotic system and that the perturbation Σ represents a

quenched disorder, upon average we obtain

〈
exp

[
i

~

(
∆Ss

(
r− δr

2
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)
−∆Ss̃

(
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δr

2
, r0, t

))]〉
= exp

[
− 1

2~2
A δr2

]
, (5.18)
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FIG. 16: Classical trajectories in the manifold that evolves classically from r0 to r, representing the diagonal component of
fΣ. The action differences ∆S of trajectories s and s̃ are correlated. The shaded regions depict the initial and final classical
densities.

where A is given by Eq. (2.30). We therefore have

fd
Σ(r, t) =

(
2σ4

π~2A

)d/2 ∑

s(r0,r,t)

C2
s exp

[
−2σ2

~2
(ps − p0)

2

]
, (5.19)

and the corresponding contribution to the Loschmidt echo is

Md(t) =

∫
dr fd

Σ(r, t) =

(
2σ4

π~2A

)d/2 ∫
dp C exp

[
−2σ2

~2
(p− p0)

2

]
. (5.20)

As in Eqs. (2.9) and (2.23) we have used C as the Jacobian of the transformation from r to p. Now the dominant
trajectories are those starting from r0 and momentum p0. We are then back to the case of the previously discussed
(Eqs. (2.31) and (3.36)) diagonal contribution.

Md(t) ≃ A e−λt, (5.21)

where C = (m/t)de−λt is assumed, and A = (mσ/A1/2t)d. The decay rate of the diagonal contribution is set by the
Lyapunov exponent λ, and therefore independent on the perturbation Σ.

The second possibility we have to consider is the case where there does not exist any trajectory leaving from r0

with momentum close to p0 that arrives to the neighborhood of r after a time t. It is a property of the Wigner
function that in the region of phase space classically inaccessible by Xt the points r half-way between branches of the
classically evolved distribution will yield the largest values of fΣ (Fig. 17). The trajectories s and s̃ visit now different
regions of the configuration space, therefore the impurity average can be done independently for each of them. As in
Eq. (2.20), we have

〈
exp

[
i

~
∆Ss

]〉
= exp

[
− 1

2~2

〈
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s

〉]
= exp
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.

(5.22)

Such an average only depends on the length L = v0t of the trajectories. Thus, after average the non-diagonal term
writes

fnd
Σ (r, t) =

(
σ2

π~2

)d

exp

[
−v0t

ℓ̃

] ∫
dδr

∑

s,s̃

CsCs̃ exp

[
−σ

2

~2

(
(ps − p0)

2
+ (ps̃ − p0)

2
)]

. (5.23)



29

FIG. 17: Non-diagonal classical contribution to the LE given by trajectories departing from r0 and arriving to points equidistant
from the point r where the Wigner function is evaluated. The action differences ∆S associated with both trajectories are
uncorrelated.

The trajectory s (s̃) goes between the points r0 and r∓ δr/2. That is why the largest values of fnd
Σ (r, t) are attained

when r is in the middle of two branches of the classically evolved distribution. Other points r result in much smaller
values of fnd

Σ (r, t), since the classical trajectories that go between r0 and r ∓ δr/2 require initial momenta ps (ps̃)
very different from p0. Thus, exponentially suppressed contributions result.

The non-diagonal contribution to the Loschmidt echo can now be written as

Mnd(t) =

∫
dr fnd

Σ (r, t) =

(
σ2

π~2
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exp
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2
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2

= exp
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]
(5.24)

As in Eqs. (2.23) and (3.24), we have made the change of variable from r to p, and accordingly, we have obtained the
non-diagonal contribution to the LE18. As discussed before, such a contribution is a Fermi Golden Rule like22. In the
limit of ~ → 0 our diagonal term, Eq. (5.21), obtained from the final points who follow the classical flow, dominates
the LE, consistently with our findings of Sec. IVB.

C. Decoherence and emergence of classicality

Decoherence in a quantum system arises from its interaction with an external environment, over which the observers
have no information nor control48,65,66. The states more sensitive to decoherence are those with quantum superposi-
tions (Schrödinger cat states), since they depend strongly on the information coded in the phase of the wave-function,
which is blurred by the interaction with the environment.

The studies of decoherence have traditionally considered one-dimensional systems, and often ignored the crucial role
of its underlying classical dynamics67. On the other hand, it has been proposed19 and later corroborated numerically68,
that for a classically chaotic system the entropy production rate (computed from its reduced density matrix) is given
by the Lyapunov exponent. Moreover, as shown in Ref. 18 and thoroughly discussed in this work, the decay rate
of the Loschmidt echo in a multidimensional classically chaotic system becomes independent on the strength of the
perturbation that breaks the time reversal between two well-defined limits (and set by the Lyapunov exponent). The
connection between decoherence and Loschmidt echo has been discussed in Refs. 18,69 and has induced us to note as
τφ the relaxation rate of the LE.

Decoherence is typically analyzed through the time decay of the off-diagonal matrix elements of the reduced density
matrix (where the environmental degrees of freedom of the total density matrix of the system and its environment are
traced out), while the wave-function superposition defining the LE can be cast as a trace of reduced density matrices
or Wigner functions evolving with different Hamiltonians (Eq. 1.2). Zurek has recently proposed to consider the
relevance of sub-Planck structure (in phase-space) of the Wigner function for the study of quantum decoherence36.
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Considering the example of a coherent superposition of two minimum uncertainty Gaussian wave-packets (of width
σ, centered at ±x0, and with vanishing mean momentum) in a one dimensional system, where the Wigner function
(up to a normalization factor) is given by

W (x, p) = exp

[
− (x− x0)

2

σ2
− σ2p2

~2

]
+ exp

[
− (x+ x0)

2
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− σ2p2

~2

]
+ 2 exp

[
−x

2

σ2
− σ2p2

~2

]
cos

[
2px0

~

]
, (5.25)

it is clearly seen that in phase-space this distribution presents two spots located around ±x0 positive with positive
values, and between them an oscillating structure taking large positive and negative values (called interference fringes
for their similitude with a double-slit experience). It has then been proposed that the fringes substantially enhance
the sensitivity of the quantum state to an external perturbation. A strong coupling with an environment suppresses
the fringes, and the resulting Wigner function becomes positive everywhere and similar to the corresponding Liouville
distribution of the equivalent classical system (with statistical mixtures instead of superpositions)66. Jacquod and
collaborators41 have contested this approach, by demonstrating that the enhanced decay is described entirely by the
classical Lyapunov exponent, and hence insensitive to the quantum interference that leads to the sub-Planck structures
of the Wigner function.

Working with the superposition of two Wigner functions (as in the case of the echo) and with genuinely multidi-
mensional classically chaotic systems allows us to give a consistent description of the connection between quantum
decoherence and the Loschmidt echo and the emergence of classical behavior.

In the previous sections, from the semiclassical evolution of the Wigner function we were able to identify the non-
diagonal component Mnd as the contribution to the LE given by the values of the Wigner function between the
branches of the classically evolved initial distribution (Fig. 17). Using the example of the two Gaussians of Eq. (5.25)
(but keeping in mind that the situation is more complicated since our chaotic dynamics yields a much richer structure
in phase-space), we see that in the region between branches both of the Wigner functions contributing to (1.2) are
highly oscillating, and quite different from each other. The overlap, which is perfect for zero coupling (ensuring the
unitarity requirement) is rapidly suppressed with increasing perturbation strength. As discussed earlier in the text
(see also Refs.18,22), when Mnd is the dominant contribution to M , we are in the Fermi Golden Rule regime. We have
seen that this weak perturbation regime collapses as ~→ 0 (Eqs. 2.32 and 3.39).

Beyond a critical perturbation, the diagonal component Md takes over as the dominant contribution to the LE,
and is given by the values of the Wigner function on the regions of phase space that result from the classical evolution
of the initial distribution. This is the Lyapunov regime, where the decay rate of M(t) is given by λ. Notice that this
behavior is still of quantum origin, as we are comparing the increase of the actions of nearby trajectories by the effect
of a small perturbation, assuming that the classical dynamics is unchanged. The behavior in the Lyapunov regime
does not simply follow from the classical fidelity, where the change in the classical trajectories is taken into account,
and the finite resolution with which we follow them plays a major role. The upper value of the perturbation strength
for observing the Lyapunov regime is a classical one, i.e. ~ independent (ℓtr ≃ L in Sec. II D and Eq. (4.3)).

For stronger perturbations (see discussions in Sects. II D and IVB) the classical trajectories are affected and the
decay rate of the LE is again perturbation dependent. The Wigner function approach to the LE also helps to develop
our intuition about the quantum to classical transition. The Lyapunov regime is the correct classical limit of a chaotic
system weakly coupled to an external environment.

VI. CONCLUSIONS

In this work we have studied the decay of the Loschmidt echo in classically chaotic systems and presented evidence
for the universality of the Lyapunov regime, where the relaxation rate becomes independent of the perturbation,
and given by the Lyapunov exponent of the classical system. Using analytical and numerical calculations we have
determined the range (in perturbation strength) of the Lyapunov regime, its robustness respect to the classical limit,
the form of the perturbation, and the average conditions.

We presented semiclassical calculations in two different Hamiltonian systems: a classically chaotic billiard perturbed
by quenched disorder, and a Lorentz gas where the perturbation is given by an anisotropy of the mass tensor. In the
later model, the numerical simulations were found in good agreement with the analytical calculations, and showed
that the Lyapunov decay extends arbitrarily beyond the Ehrenfest time (where the quantum-classical correspondence
is no longer expected to hold).

Using a Wigner function representation, we have been able to present an alternative interpretation of the two
contributions to the Loschmidt echo. The non-diagonal (Fermi Golden Rule) regime obtained for weak perturbation
was shown to arise from the destruction of coherence between non-local superpositions thus destroying the non-
classical part of the distribution. In contrast, the diagonal (Lyapunov) regime obtained for stronger perturbation



31

or more classical systems was shown to be given by the classical part of the evolved initial distribution. Thus,
the Lyapunov regime is associated with the classical evolution (even though is of quantum origin), while the Fermi
Golden Rule has a purely quantum nature. In this way, the persistence of the Lyapunov regime after Ehrenfest
time is understood as the emergence of classical behavior due to the fast dephasing of the purely quantum terms.
This is in consistency with the understanding of the quantum-classical transition in quantum systems coupled to an
environment driven by the decoherence65.

The existence and universality of an environment-independent regime and its consequence in the phase-space be-
havior of the Wigner function provide a highlight on the connection between the Loschmidt echo and quantum
decoherence. Such a connection, as well as the experiments testing the universal behavior, are promising subjects for
future research.

The universal behavior of the Loschmidt echo requires an underlying classically chaotic system, like the ones we
have considered in this work. Hamiltonian systems with regular dynamics have been shown to exhibit an anomalous
power-law for the decay of the Loschmidt echo30. This behavior is quite different from the one we obtain for chaotic
systems. Therefore, we see that the Loschmidt echo constitutes a relevant concept in the study of Quantum Chaos13.
Such a connection, clearly deserves further studies.

The Loschmidt echo in the Lorentz gas has been recently calculated for short times70, and a rate given by twice
the Lyapunov exponent has been proposed. It would be interesting to investigate if the difference in times scales is
responsible for the departure from our results.
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APPENDIX A: CLASSICAL DYNAMICS WITH AN ANISOTROPIC MASS TENSOR

Let us assume a particle in a free space with mass tensor
↔
m surrounded by an infinite potential surface (hard wall).

Suppose that the particle departs from a point r0 at time t0 and arrives to a final point r at time t. We must calculate
the time tc and position rc along the surface at which the particle collides. The action along the trajectory is

S =
(rc − r0)

↔
m(rc − r0)

2(tc − t0)
+

(r− rc)
↔
m(r− rc)

2(t− tc)
. (A1)

We can solve the problem by minimizing the action, taking the derivative of Eq. (A1) along the surface. Introducing
unitary vector n normal to the surface at the point of collision, we can express the minimization condition as

n×∇rc
S = 0 . (A2)

Denoting the initial and final velocities as vi = (rc − r0)/(tc − t0) and vf = (r− rc)/(t− tc), we can write

n× ↔
m(vi − vf ) = 0 . (A3)

This, along with the conservation of energy E = v
↔
mv/2, results in Eqs. (3.15). The same result is obtained in the

case of stretched boundaries.

APPENDIX B: NUMERICAL METHOD TO SIMULATE THE QUANTUM DYNAMICS

In order to compute the quantum dynamics of the system we resort to a lattice discretization (tight-binding model)
in a scale a much smaller that the wavelength of the packets. This condition is relevant to accurately recover the
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dispersion relation of the free particle Ek = ~
2k2/(2m), from the energy spectrum of the (open boundaries) discretized

system,

Ek =
2~

2

ma2
− ~

2

ma2
(cos(kxa) + cos(kya)) . (B1)

Setting the lattice step as the unit length (a = 1) we typically worked with R = 20, except for the calculations
in Sec. IVB where, in order to keep the precision for smaller wavelengths, a was reduced keeping the product ka
constant.

The discretization results in a Hamiltonian matrix whose diagonal elements are the on-site energies. The off–diagonal
elements are hopping terms V = ~

2/(2ma2) which is the maximum kinetic energy represented by the discretization.
The quantum dynamics on the lattice was carried out using a Trotter-Suzuki algorithm71, which is a remarkably

precise and efficient numerical method. At the lowest order, it is a decomposition of the evolution operator U for a
small time τ in a product of analytically solvable evolution operators. Typically one searches for a way to write the

Hamiltonian of the system as H =
∑Q

k Hk, where Hk are 2× 2 matrices, and thus

U(τ) = exp [iHτ/~] ≃ Ũ(τ) =

Q∏

k

exp [iHkτ/~] , (B2)

where Uk(τ) = exp[iHkτ/~] are rotation matrices.
The highest orders involve a fractal decomposition of τ that preserves the unitarity of the approximated evolution

operator. In our calculations, a fourth–order algorithm with a time step τ = 0.1~/V was precise enough for the time
regime of interest.
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